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Cancer stem cells (CSCs) are a unique subset of cells within tumors with stemlike properties that have been proposed to be key
drivers of tumor initiation and progression. CSCs are functionally defined by their unlimited self-renewal capacity and their ability
to initiate tumor formation in vivo. Like normal stem cells, CSCs exist in a cellular niche comprised of numerous cell types including
tumor-associated macrophages (TAMs) which provides a uniquemicroenvironment to protect and promote CSC functions. TAMs
provide pivotal signals to promote CSC survival, self-renewal, maintenance, andmigratory ability, and in turn, CSCs deliver tumor-
promoting cues to TAMs that further enhance tumorigenesis. Studies in the last decade have aimed to understand the molecular
mediators of CSCs and TAMs, and recent advances have begun to elucidate the complex cross talk that occurs between these two
cell types. In this review, we discuss the molecular interactions that define CSC-TAM cross talk at each stage of tumor progression
and examine the clinical implications of targeting these interactions.

1. Introduction

Cancer stem cells (CSCs), also known as tumor-initiating
cells or tumor-propagating cells, constitute a biologically
unique subset of stemlike cells within the bulk tumor cell
population. These cells are hypothesized to be key drivers
of the multistep process of oncogenesis, giving rise to the
clonogenic core of tumor tissues. Thus, according to the
CSC model of tumor heterogeneity [1], malignancies have a
hierarchical developmental structure with the CSC at the top
of the hierarchy (Figure 1).This idea that tumor initiation and
progression are driven by stemlike cells was first proposed
>150 years ago by Virchow [2] and has long been debated.
While their existence has been confirmed across numerous
different tumor entities, including acute myeloid leukaemia
[3], pancreatic cancer [4, 5], breast cancer [6], lung cancer [7],
hepatocellular carcinoma [8], head and neck cancer [9], colon
cancer [10, 11], prostate cancer [12], melanoma [13, 14], and
glioblastoma [15], the origin of CSCs is not fully understood.
This review does not aim to discuss the origin of CSCs,

except to point out that whether CSCs arise from normal
stem/progenitor/differentiated cells or acquiremutations that
confer stem cell-like properties, CSCs should not be confused
with normal stem cells becoming cancerous (“cancerous stem
cells”) [16]. Rather CSCs are believed to have acquired,
over time, phenotypes and characteristics of normal stem
cells such as unlimited self-renewal and the capacity to
divide indefinitely and at the same time maintain the ability
to generate multiple cell lineages, including differentiated
progenies [17, 18]. Thus, CSCs are functionally defined by
their self-renewal capacity, their multipotency, and their
exclusive ability to initiate tumors inmice upon serial passage
[1, 16].

The clinical implication of the CSC model suggests that
only elimination of the CSC will result in eradication of the
tumor, while failure to do so will inevitably lead to tumor
relapse. This concept is supported by data demonstrating
that primary tumors with a clear stem cell signature are
consistently associated with poor response rates and relapse
[19–22], and CSCs are more resistant to chemotherapy and
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Figure 1:The CSCmodel. Over time, CSCs acquire phenotypes and
characteristics of normal stem cells such as unlimited self-renewal
and the capacity to divide indefinitely and at the same timemaintain
the ability to generate multiple cell lineages, including differentiated
progenies. A CSC can thus divide (1) asymmetrically (differentia-
tion) giving rise to one CSC and a specialized differentiated cell or
(2) symmetrically (self-renewal) giving rise to two identical CSCs. In
both cases, the capacity of self-renewal remains intact and ensures
the survival of the CSC pool and supports the hierarchical model of
tumor cell heterogeneity.

radiotherapy than “differentiated” tumor cells [22, 23], likely
due to cellular defense mechanisms shared with normal stem
cells [24–26]. Consequently, the idea of eliminating CSCs as a
therapeutic strategy is already beginning to revolutionize how
we foresee cancer treatment in the immediate future, with
CSC-specific compounds expected to lead the battle. How-
ever, we are far from achieving this goal, as our understanding
of the CSC niche and the cellular determinants that CSCs
need for survival is in its infancy.

Like somatic stem cells, CSCs exist in a cellular niche that
provides key signals for self-renewal and tumorigenesis [27,
28] (Figure 2). More specifically, the tumor microenviron-
ment protects CSCs from immune surveillance, apoptosis,
and chemotherapeutics and above all, the niche provides
CSCs with factors that maintain, drive, and promote their
“stemness.” In general, developing tumors promote the
creation of a unique cellular microenvironment containing
extracellular matrix proteins (e.g., collagen, elastin) and a
diverse collection of cells, including cancer-associated fibrob-
lasts; stellate cells [in pancreatic cancer or hepatocellular
carcinoma (HCC)]; immune cells such as myeloid-derived
suppressor cells, monocytes, macrophages, and T-cells; and
endothelial cells [29–31]. While each cell or environmental
component has a particular function on its own, together they
create a dynamic niche replete with secreted factors that syn-
ergize and cooperate to develop a complex communication
network known as cross talk, with the CSC at center stage.

The importance of the tumor microenvironment in pro-
moting cancer initiation and tumor growth has been increas-
ingly recognized over the past decade [31–35]. In addition
to providing structural support for tumor development, the
tumor-associated microenvironment of many solid tumors

provides cues to CSCs that regulate their self-renewal and
metastatic potential as well as their resistance to conventional
chemotherapeutic agents [33, 36]. For example, in human
breast cancers, recruited mesenchymal stem cells (MSC)
interact with breast CSCs through cytokine loops involving
interleukin- (IL-) 6, CXCL7, prostaglandin E2, IL-8, or Gro-
𝛼 stimulating their self-renewal capacity [37, 38]. Stromal
fibroblasts present in invasive human breast carcinomas
promote tumor growth through elevated SDF-1/CXCL12
secretion [37], and lung stromal fibroblast-derived periostin
creates a metastatic niche for breast CSCs [39]. In pancre-
atic cancer, tumor-associated pancreatic stellate cells create
a paracrine niche for pancreatic CSCs via Nodal/Activin
secretion [33]. Likewise, hepatic stellate cells in HCC con-
tribute to liver CSC chemoresistance by secreting hepatocyte
growth factor (HGF) [40]. These studies provide further
evidence that the tumor microenvironment is essential for
CSC functions.

An area of great interest is the role of inflammatory cells
in the CSC niche. The tumor microenvironment is charac-
terized by chronic inflammation, which, instead of inhibiting
tumor growth, favors tumor formation by stimulating cell
proliferation, activating CSCs, and promotingmetastasis [28,
41]. Leading the tumor inflammatory response are tumor-
associated macrophages (TAMs) [42]. A correlation between
high numbers of TAMs and rapid disease progression and
poor patient outcome has been observed for decades [32, 43,
44]; however, only recently was this paradoxical phenotype
explained. We now understand that this correlation is due to
TAM-mediated paracrine signaling, in which macrophage-
derived factors activate the CSC compartment and promote
stemlike features of CSCs, exacerbating tumor progression,
metastasis, and even CSC chemoresistance. In this review, we
focus on the role of TAMs inCSCbiology and pathogenesis in
solid tumors. We critically discuss the contribution of TAMs
on premalignancy, primary tumor CSCs, circulating CSCs,
and the initiation of premetastatic niches in distant organs.
We also examine the prospects of directly targeting TAMs or
disrupting TAM-CSC cross talk for cancer therapy.

2. Tumor-Associated Macrophages

Macrophages, a heterogeneous population of innate myeloid
cells, originate from monocytic precursors and can undergo
specific differentiation/polarization in the blood orwithin tis-
sues [45, 46]. In addition to monocytes, the yolk sac and fetal
liver represent two additional sources for colony-stimulating
factor-1 receptor- (CSF-1R-) dependent macrophages during
early development [47, 48]. Macrophages are not static but
rather are extremely plastic and can assume multiple phe-
notypes in response to constantly changing environmental
cues (e.g., bacterial infection, wounds, and cancer). From a
simplistic point of view, macrophages are polarized towards
a classically activated or “M1” phenotype via type I helper
T (Th1) cytokines [e.g., interferon- (IFN-) 𝛾] and/or acti-
vation of Toll-like receptors upon engagement with bacte-
rial components (e.g., lipopolysaccharides). M1 macrophages
are therefore involved in Th1 responses to pathogens and
microbes and are characterized by elevated proinflammatory
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Figure 2:The CSC niche and tumor microenvironment. At center stage is the CSC, in contact with a complex and dynamic cellular network,
including daughter cancer cells, stellate cells (in the case of HCC and PDAC), cancer-associated fibroblasts (CAFs), and immune cells,
which include T-cells, monocytes, neutrophils, and tumor-associated macrophages (TAMs). Nourished by the circulatory system, these
cells communicate with one another and directly with the CSC via secreted factors, forming a positive feedback loop that promotes CSC
tumorigenicity and metastasis.

cytokines such as IL-12, IL-1𝛽, IL-6, and tumor necrosis factor
𝛼 (TNF-𝛼), increased expression of major histocompatibility
complex (MHC) class II, generation of reactive oxygen and
nitrogen intermediates, and enhanced cell killing [49]. In
response to IL-4, IL-10, and IL-13, however, macrophages
can polarize towards an alternatively activated “M2” pheno-
type participating in Th2-type responses including humoral
immunity, wound healing, and tissue remodeling [50]. They
are characterized by high expression of scavengingmolecules,
mannose and galactose receptors, activation of the arginase
pathway, production of IL-10, vascular endothelial growth
factor (VEGF), and matrix metalloproteinases (MMPs), and
efficient phagocytic activity [49, 50] (Figure 3).

Monocyte infiltration into a tumor is mediated by che-
mokines (e.g., CCL2, CCL5, and CXCL12), CSF-1, and com-
ponents of the complement cascade [51, 52]. Once they are
within the tumor, the tumor environment rapidly promotes
their differentiation into tumor-conditioned macrophages.
TAMs were initially believed to be biased away from an
M1 phenotype, expressing M2 protumor markers [53]. We
now understand that while they do share greater simi-
larity with alternatively activated M2 macrophages, tumor

macrophages are composed of several distinct populations
that share features of both M1 and M2 macrophages. Thus,
merely classifying tumor macrophages as M1 or M2 does
not accurately reflect the differentiated or biological state of
TAMs. Rather, the classification of TAMs should be related
to the function of the macrophage subpopulation within
the tumor (e.g., metastasis-promoting macrophage, angio-
genic macrophage, and immunosuppressive macrophage) as
has been proposed by others [44, 50, 53, 54]. For such
classification purposes, researchers have relied primarily on
the analysis of cell surface markers, none of which are
entirely restricted to a specific subpopulation or lineage.
In the murine setting, the absence of Gr1 (Ly6G) and the
expression of the canonical markers CD11b, F4/80, and CSF-
1R in combinationwithmRNA analysis of additionalmarkers
(Figure 3) are routinely used to classify macrophage subtypes
[44]. In the human setting, antibodies to the glycoprotein
CD68, the LPS-coreceptor CD14, CD312, CD115, HLA-DR,
or Fc𝛾RIII (CD16) have been used to identify macrophages,
but with mixed and oftentimes contradictory results [46].
Combinations of thesemarkers provide higher specificity and
should be used when possible to discriminate macrophages
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Figure 3: Macrophage plasticity and characterization. The binary M1/M2 classification of macrophages suggests that human macrophages
exist as either proinflammatory M1 macrophages or protumor M2 TAMs, which can be identified based on the expression of cell surface
cell membrane markers. This concept has been challenged by the identification of numerous TAM subtypes (angiogenesis-promoting TAM,
metastasis-promoting TAM, immunosuppressive TAM, and CSC-promoting TAM) that exist within the primary tumor and metastatic sites.
The existence of a specific TAM subtype is driven by the interaction of macrophages with factors secreted by the tumor microenvironment,
leading to transcriptional rewiring of TAMs with a specific gene signature profile. TAMs are highly plastic and can shift between subtypes
based on tumor-specific signals and stimuli.

from other myeloid-derived cells, such as polymorphonu-
clear neutrophils and eosinophils. To more specifically iden-
tify M2-like TAMs and subsets, the hemoglobin-scavenger
receptor CD163 [55, 56], the macrophage scavenger receptor
1 CD204 [53, 57, 58], the mannose receptor CD206 [59], and
more recently the T-cell immunoglobulin andmucin-domain
containing protein-3 (Tim-3) [60] have been used with great
success. Ultimately, however, there remains considerable
controversy regarding how to properly classify and identify
TAMs. While classifications based on TAM functions, such
as the promotion of angiogenesis or immunosuppression,
are now being used to better categorize TAMs (Figure 3), it
is important to note that macrophages are dynamic, plastic
cells capable of performing many functions simultaneously.
Thus, this approach may be self-limiting and underscore
the multifunctional capabilities of TAMs. Since the scientific
community has yet to come to a consensus regarding what

markers to use and how to refer to macrophages, the binary
M1/M2 classification remains commonly used [47].

TAMs directly participate in tumor initiation, progres-
sion, and metastasis via numerous mechanisms including
(1) the secretion of proteolytic molecules such as MMPs
to facilitate ECM remodeling [61–64], (2) the expression of
nonproteolytic proteins like chemokines [65, 66], TGF-𝛽1
[67, 68], and hCAP/LL-37 [69, 70] to facilitate tumor cell
proliferation, migration, and invasiveness, (3) the expression
of angiogenic mediators such as TGF-𝛽, VEGF-A, VEGF-
C, platelet-derived growth factor (PDGF), and MMP-9 to
sustain the growth of the tumor stroma and promote de
novo tumor blood vessel formation [44, 65, 71, 72], or (4)
the expression of immunosuppressive factors including TGF-
𝛽, inducible nitric oxide synthase (iNOS), arginase-1, IDO
(indoleamine 2,3-dioxygenase), and IL-10 to facilitate T-cell
proliferation and activity [73–75]. While the mechanisms
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underlying the protumor effects of TAMs on bulk tumors
have been extensively studied, there is now growing clini-
cal and experimental evidence to support that TAMs also
enhance tumor progression by directly communicating with
CSCs to promote their stemness and/or subsequent onco-
genic properties [76].

3. The Premalignant Niche

Normal adult stem cells occupy protective niches in various
tissues where they function in tissue homeostasis and repair.
The activity of stem cells in their tissue-specific niche is
regulated by their own intrinsic molecular activity and the
signals that they receive from neighboring differentiated cells
[77, 78]. Increasing evidence, discussed below, suggests that
macrophages interact with stem cells within their tissue-
specific niche tomodulate self-renewal and tissue remodeling
in both normal and preinvasive tissues.

Alterations in tissue organization and homeostasis can
precede tumor initiation, as exemplified by the increased
cancer risk associated with chronic inflammation and wound
healing. Moreover, epidemiological studies have shown that
the administration of nonsteroidal anti-inflammatory drugs
(NSAIDs) in low doses results in a significant decreased
risk of developing colon, breast, esophageal, Hodgkin’s lym-
phoma, pancreatic, and stomach cancer [79]. Thus, even
before cancer begins, chronic inflammation or prolonged
inflammatory episodes can set the stage for oncogenesis.
The transcription factor nuclear factor-kappa B (NF𝜅B) is
at the heart of cancer-related inflammation. In inflamma-
tory cells, the NF𝜅B pathway results in the induction of
numerous tumor-promoting chemokines and cytokines such
as IL-6, TNF-𝛼, IL-1𝛽, CXCL8, VEGF, and CSF-1 [80]. In
a mouse model of colitis-associated cancer, suppression of
NF𝜅B in myeloid cells was shown to significantly decrease
the incidence and size of tumors [81]. Subsequent studies
showed that activation of NF𝜅B in macrophages leads to
production of IL-6 and signal transducer and activator of
transcription 3 (STAT3) signaling in neighboring cells, which
promotes premalignant intestinal epithelial cell survival and
CSC proliferation in vivo [82–84]. CCAAT/enhancer binding
protein beta (C/EBP𝛽) transcriptionally activates IL-6 in
epithelial cells and is a direct target of IL-6 in macrophages.
Interestingly, C/EBP𝛽 was shown to regulate stem cell self-
renewal and maintenance in the normal mouse mammary
gland [85], and C/EBP𝛽, IL-6, and STAT3 are all overex-
pressed in preinvasive mammary hyperplasia as compared to
normal mammary gland (H. Machado, unpublished data).

Interestingly, the effect of NF𝜅B activation on tumor ini-
tiation seems to be cell type-specific. In a diethylnitrosamine-
(DEN-) induced model of HCC, mice with I𝜅B kinase beta-
(IKK𝛽-) deficient hepatocytes alone showed a significant
increase in tumor number and size, which were characterized
by increased reactive oxygen species (ROS), JNK signaling,
and hepatocyte death.This cell death stimulatedmyeloid cells
to produce mitogens such as IL-6, TNF-𝛼, and HGF, which
stimulated proliferation of the surviving hepatocytes. This
effect was mitigated either when an antioxidant was admin-
istered to these mice or by conditional deletion of IKK𝛽 in

hepatocytes and Kupffer cells [86]. While the role of CSCs in
this model is unknown, studies using the normal mammary
epithelial cell line, MCF10A, showed that activation of NF𝜅B
leads to Lin28-mediated repression of Let7, resulting in a
biphasic increase in IL-6 and ultimately self-renewal of CSCs
[87]. NF𝜅B activation in infiltrating macrophages has also
been tightly linked to pancreatitis and the development of
pancreatic intraepithelial neoplasia (PanIN). During pancre-
atitis, acinar cells can undergo a transdifferentiation process
known as acinar-to-ductal metaplasia (ADM) where their
phenotype changes to a duct-like progenitor cell [88]. This
process is driven by NF𝜅B-stimulated macrophage secretion
of TNF-𝛼, CCL5, and MMP-9 [89]. Once these duct-like
progenitors are formed they can progress to PanINs if an
oncogenic mutation is acquired, such as in KRAS [90].
Interestingly, a recent study showed that oncogenic KRAS
signaling induces intracellular adhesion molecule-1 (ICAM-
1) expression and the attraction ofM1 polarizedmacrophages.
Once recruited, these M1 macrophages promote ADM by
secreting TNF-𝛼 and MMP-9 [91]. While M1 macrophages
are generally believed to be “antitumor,” they may also con-
tribute to oncogenic mutations by releasing reactive nitrogen
and oxygen intermediates in premalignancy.

During inflammation,macrophages and other infiltrating
leukocytes generate high levels of ROS and nitric oxide inter-
mediates that generate DNA damage and genetic instability
in epithelial cells. In addition, inflammatory cytokines and
ROS deregulate DNA repair enzymes and p53 transcriptional
activity leading to microsatellite and chromosome instability
[83]. Inmousemodels with high levels of ROS, hematopoietic
stem cells and oligodendrocyte/type 2 astrocyte progenitor
cells have dramatically reduced self-renewal capacity due to
the expression of senescence related proteins p16INK4a and
p19Arf [92]. In tumors, CSCs upregulate cellular antioxidants
to quench ROS [93, 94]. While the effect of ROS on CSCs in
the preinvasive niche is not known, ROS scavenger proteins
in CSCs may help select for their survival in premalignant
lesions.

4. Primary Tumors

While TAMs in the preinvasive niche contribute to oncogenic
transformation and survival, a growing body of evidence
suggests that they are critical for the self-renewal and
maintenance of CSCs in established tumors. STAT3 and
NF𝜅B are key regulators of these processes. Once infiltrated
into tumors, TAMs contribute to chronic inflammation by
secreting inflammatory cytokines, such as IL-1𝛽, IL-6, and IL-
8 (CXCL8) [66, 95–97]. In breast cancer xenografts, IL-6 acti-
vates STAT3 by binding to its receptor (gp130) and directly
stimulates breast CSC self-renewal [87]. Similarly, binding of
IL-8 to the receptor CXCR1 promotes breast CSC expansion
and prevents apoptosis [98]. Both of these cytokines are
activated by the NF𝜅B pathway and, in a positive feedback
loop mechanism, maintain and activate NF𝜅B [99]. In HCC,
TAMs promote the expansion of CD44+ stemlike HCC cells
in an in vitro coculture system. Furthermore, TAM-derived
IL-6 induced CD44+ stemlike cell expansion by activating
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STAT3, and blocking IL-6 with tocilizumab ablated CD44+
sphere formation in vitro and tumor growth in patient-
derived HCC xenografts [100]. Mitchem et al. showed that
ablation of CCR2 or CSF-1R signaling significantly blocked
TAM infiltration into pancreatic ductal adenocarcinoma
(PDAC), decreased the number of CD44+ALDH1+ CSCs,
and improved response to chemotherapy. Infiltrating TAMs
also enhanced tumor-initiating properties of CD44+ALDH1+
pancreatic CSCs by activating STAT3 signaling [101].

IL-17 is another proinflammatory cytokine produced by
macrophages and T-cells and has been shown to contribute to
cancer-associated inflammation in numerous cancers [102–
105]. Xiang et al. demonstrated that IL-17 promotes the self-
renewal of ovarian CD133+ cancer stemlike cells through a
mechanism involving NF𝜅B and p38 MAPK [106]. Using
several different ER+ breast cancer cell lines, Ward et al.
showed that coculture of M2 macrophages, but not M1
macrophages, increased tumor sphere formation in vitro,
although the mechanism by which these macrophages pro-
moted CSC expansion was not tested. Treatment of CSC
spheres with zoledronate, a bisphosphonate currently used
to treat osteoporosis and bone metastasis, reduced M2
macrophage-mediated sphere formation andmigration [107].

The Sox family of transcription factors has also been
shown to regulate CSCs in breast cancer. It is well known
that a positive feedback loop exists between TAMs and
tumor cells, involving epidermal growth factor (EGF) and
CSF-1 [108]. Tumor cells secrete CSF-1 that promotes TAM
production of EGF, and TAM-derived EGF stimulates tumor
cell CSF-1 secretion. In mouse mammary tumor models,
TAMs upregulate Sox 2 expression, which increases numer-
ous stem cell genes including Sox-2, Oct-4, Nanog, and Sca-1.
Inhibition of the EGF receptor (EGFR1) or STAT3 activation
reduced Sox2 expression and CSC-associated phenotypes,
suggesting a unique paracrine signaling pathway between
TAMs and CSCs [109]. Overexpression of Sox-2 was also
shown to increase breast CSC self-renewal by increasing
tumor sphere-forming ability in vitro [110]. Sox-4, another
pluripotency-associated gene, induced Ezh2 expression [111],
which promoted breast CSC expansion by activating Raf-1
and 𝛽-catenin [112].

In addition to mediating CSC self-renewal and expan-
sion, TAMs have been shown to be responsible for the
maintenance of the CSC niche. A recent study by Lu and
colleagues demonstrated juxtacrine signaling by TAMs and
tumor-associated monocytes with mouse mammary CSCs to
support the maintenance of a stemlike state [113]. EphH4
binding to its receptor on tumor cells resulted in the
activation of Src and NF𝜅B, the latter of which caused
the secretion of numerous cytokines that function in CSC
maintenance. The IL-6/STAT3 pathway was also shown to
increase tumor-initiating activities in murine colon and lung
cancer cell lines bymilk fat globulin epidermal growth factor-
8 (MFGE-8). TAMsproduced large amounts of bothMFGE-8
and IL-6, which coordinately induced tumor potential and
CSC chemoresistance through STAT3 and Hedgehog sig-
naling, the latter of which regulates normal stem cell self-
renewal. Interestingly, theMFGE-8 receptor, 𝛼v-integrin, was
expressed in much higher levels on CSCs as compared to

non-CSCs, further supporting a role for MFGE-8 in CSC
maintenance [114].

While numerous studies have demonstrated that TAMs
directly regulate CSC self-renewal and maintenance, there
is a growing body of research that suggests that, in turn,
CSCs recruit macrophages to solid tumors and enhance a
protumor phenotype in TAMs. Zhou et al. recently showed
that the extracellularmatrix protein periostin is preferentially
expressed on CD133+CD15+ glioma stem cells and recruits
macrophages through integrin 𝛼v𝛽3 from the peripheral
blood to the brain. Deletion of periostin in glioma stem
cells resulted in decreased M2 TAM density, reduced tumor
growth, and consequently increased survival in glioblastoma
xenografts [115]. In pancreatic cancer, primary human PDAC
CSCs (spheres) produce IFN𝛽, which then induces the
secretion of IFN-stimulated gene 15 (ISG15) in recruited
TAMs. Consequently, TAM-derived ISG15 induced CSC self-
renewal and tumor-initiating properties [116]. More recently,
Sainz Jr. et al. demonstrated that PDAC CSCs secrete the
TGF-𝛽 superfamily members Nodal/Activin A and TGF-𝛽1,
which then induce an M2 macrophage phenotype. Coor-
dinately, polarized TAMs secrete the antimicrobial peptide
hCAP-18/LL-37, which consequently binds to its receptors
(formyl peptide receptor 2 (FPR2) and P2X purinoceptor 7
receptor (P2X7R)) to enhance CSC self-renewal, invasion,
and tumor-initiating properties [70]. Of note, pancreatic
CSCs also overexpressed two LL-37 receptors, further indi-
cating a role for LL-37 in pancreatic CSC maintenance. In
a different study, it was shown that PDAC CSCs induce an
immunosuppressive phenotype in TAMs through STAT3,
ultimately leading to chemoresistance [101]. Notably, the
MFGE-8 receptor, which was shown to be preferentially
expressed on CSCs in colon and lung cancer cell lines,
can induce M2 polarization of macrophages in vitro though
STAT3 signaling [117]. In summary, there exists a complex
relationship between CSCs and TAMs in established tumors.
It appears that macrophages are not just accidental passersby
that happen to secrete CSC-promoting factors, but rather,
CSCs attract, reeducate, and put macrophages into their
service to support primary tumor growth. While researchers
are just beginning to unravel the intricacies of these processes,
there is no doubt that CSC-TAM cross talk represents an
important component of CSC-mediated oncogenesis.

5. Circulating Cancer Stem Cells

Distant metastases have become the leading cause of death
in patients diagnosed with cancer. Metastatic spread begins
with cancer cells [known as circulating tumor cells (CTCs)]
detaching from the primary tumor and entering into cir-
culation, via either blood vessels or lymphatic channels in
order to colonize distant sites. These cells must acquire the
ability to overcome the challenges of the hostile extratumoral
conditions and adapt to different tissue environments in
secondary distant organs, such as the lungs, bone marrow,
or liver. It is now commonly accepted that TAMs facilitate
almost every step of the metastatic cascade, from initial
migration to intravasation, dissemination, extravasation, and
establishment of metastasis at secondary sites [44, 51]. One
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of the first definitive studies to highlight the role of TAMs in
tumor metastasis was shown by Lin and colleagues in 2001.
They demonstrated that CTC levels and lungmetastases were
significantly decreased in CSF-1-deficient mice as compared
to wild type mice, supporting a role for tumor infiltrating
macrophages in metastasis [118]. Additional studies targeting
macrophages with clodronate liposomes, for example, have
shown that elimination of macrophages significantly impacts
CTC numbers and tumor metastasis [119, 120].

Once free from the tumor, CTCs can disseminate to
distant organs to produce secondarymetastatic lesions. Inter-
estingly, only a minority of CTCs exhibit the capacity to
successfully disseminate and proliferate in different organs,
suggesting an internal hierarchy within CTCs. In fact, the
existence of a small subset of CTCs with CSC properties
has been shown for metastatic breast cancer [121], prostate
cancer [122], small cell lung cancer [123], and PDAC [5],
supporting the idea of a CSC compartment within CTCs
that are distinct from CSCs of the primary tumor, enabling
their escape to distant organs and subsequent growth. If this
hierarchy within CTCs holds true, then TAMs likely facilitate
the emergence of circulating CSCs and their intravasation
and subsequent dissemination.The question remains, howdo
TAMs facilitate these processes in CSCs? While more studies
are needed, a number of experimental systems are beginning
to provide evidence that TAMs can promote an epithelial-
to-mesenchymal transition (EMT) phenotype in CSCs via
paracrine-secreted factors. Loss of epithelial differentiation,
the acquisition of a migratory phenotype, and loss of cell
adhesion are hallmarks of EMT. This process is regulated
by numerous genetic modifications and a panel of well
characterized transcription factors, such as SNAIL, TWIST,
ZEB1, ZEB2, SLUG, BMI-1, and LOXL2 [35, 124, 125]. While
numerous studies have shown that TAMs can promote an
EMT phenotype in non-CSCs [68, 126–131], TAM-mediated
EMT induction in CSCs was largely unappreciated until
recently. In the context of pancreatic cancer, two recent stud-
ies showed that CSCs isolated from patient-derived PDAC
xenografts and treated with conditioned media from M2-
polarized monocyte-derived macrophages increased migra-
tion and expression of EMT genes [70, 116]. The authors
identified the human cathelicidin antimicrobial peptide LL-
37 and ISG15 as independent TAM-secreted mediators of
these phenotypes in pancreatic CSCs. Similar TAM-mediated
EMT induction has been observed in CSCs of HCC [126]
and ovarian cancer [69]. STAT3 activation of target genes
such as TGF-𝛽1 and hypoxia inducible factor- (HIF-) 1𝛼 has
been linked to EMT reprograming [132] and several recent
studies have shown that TAM-secreted IL-6, EGF, or MFGE-
8 can activate STAT3 signaling in CSCs of breast cancer
[109, 133], HCC [100], or colon cancer [134]. Thus, apart
from activating these pathways in CSCs to promote tumor
growth as discussed above, TAM-mediated STAT3 activation
may also be necessary for EMT reprogramming in CSCs.
While the aforementioned studies highlight that EMT and
“stemness” may go hand in hand, the implications reach
beyond merely the induction of a migratory and invasive
phenotype. For example, EMT transactivators have been
associated with the maintenance of stem cell properties and

cell survival [135], andmore recently EMT induction has been
shown to produce de novo breast CSCs [135] and to facilitate
CSC maintenance in pancreatic cancer [136]. Thus, while the
TAM-mediated induction of EMT in CSCs is likely necessary
for the generation ofmigratory CSCswith invasive capacities,
the implications of an EMT transcriptional signature in CSCs
may be more dynamic than previously thought.

In addition to paracrine-mediated signaling, juxtacrine
signaling from macrophages represents an alternate means
by which TAMs can communicate with CSCs. Intravital
imaging revealed that tumor cells and macrophages interact
in a contact-dependent manner and comigrate in vivo,
tumor cell migration is dependent on juxtacrine signaling,
and the efficient long-distance comigration and eventual
intravasation of these cells are coordinated by an EGF-CSF-
1 paracrine loop [reviewed in [137]]. Along these lines, Lu et
al. recently showed that TAMs physically interact withmouse
breast CSCs via CD11b binding to the CSC marker CD90,
leading to ephrin ligand binding to EphA4, the activation
of Src and NF𝜅B, and the subsequent secretion of various
cytokines that, in turn, function to maintain the stemlike
state of CSCs [113]. Taken together, these cell-cell contact-
dependent interactions provide evidence of a physical CSC
niche supported by TAMs; however, it is also plausible
that, apart from merely interacting, CSCs and TAMs may
actually fuse with one another to create a macrophage-
tumor circulating cell with recombination/reprogramming of
genetic material [138], analogous to that observed in stem
cell fusions studies [139]. This concept, loosely known as
epithelial-myeloid transition [140], was first proposed by the
German pathologist Otto Aichel in 1911 to explain how a
cancer cell could efficiently travel through the circulatory
and lymphatic systems, while maintaining their cancer cell
growth properties. Since then, the concept has slowly gained
momentum [141, 142]. However, with the recent discoveries
of CTCs expressing both cancer and leukocyte cell markers
[143–145], the idea of “mobile hybrids” resulting from fusion
events between TAMs and tumor cells is evolving as a more
tangible explanation behind metastasis. Regardless of how
TAMs promote CSC invasion, as stated by Qian and Pollard,
macrophages “are the key that unlock the gate to allow tumor
cells to escape” [44].

6. Premetastatic Niche

While many tumor cells have a predilection for metastasis,
only a small percentage of CTCs (less than 0.2%) have the
capacity to survive in circulation, find a suitable secondary
site to support their colonization, and proliferate in their new
environment [146]. In fact, apoptosis of tumor cells entering
target organs represents a common early event duringmetas-
tasis [147, 148], severely limiting the colonization efficiency
of CTCs. Thus, while successful intravasation initiates the
metastatic process, efficient survival and proliferation deter-
mine the outcome. The “seed” and “soil” theory put forth by
Paget in 1889 suggested that the secondary organs themselves
provide the appropriate conditions (i.e., “soil”) necessary for
metastatic colonization by CTCs. Our current take on Paget’s
theory now combines “organ selectivity” with “cell fitness,”
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meaning that CTCs must also be genetically (i.e., accumulate
specific mutations) or epigenetically programmed for metas-
tasis. CSCs inherently possess the necessary “fitness” and
programs for dissemination, and at the same time they bear
the functional plasticity needed for transitioning between
mesenchymal-like and epithelial-like states [149], the latter
being necessary for CSCs to seed and resume growth at the
metastatic site. In 2006, Balic et al. first linked metastasis
to CSCs by demonstrating that disseminated breast cancer
cells in bone marrow possessed stem cell phenotypes [150].
One year later, Hermann et al. showed that tumor metastasis
in PDAC is driven by a distinct subpopulation of CD133+
CXCR4+ CSCs in the invasive front [5]. Today, CTCs have
been shown to coexpress EMT and multiple stem markers,
suggesting that CSCs are present within the CTC population
[151].

In light of ever growing data supporting a role for CSCs
as the “seed,” CSCs are also susceptible to the harsh con-
ditions faced during dissemination and not all cells bearing
CSC markers are metastatic. Thus the “soil” counterpart of
Paget’s theory must also be important for CSC-mediated
metastasis. Indeed, it has become evident that the formation
of CSC-promoting premetastatic niches in secondary organs
is not only essential but also necessary for successful CSC
colonization, and current evidence suggests that resident or
infiltrating immune cells, specifically macrophages, at distant
sites drive the creation of premetastatic niches to facilitate
successful establishment of secondary lesions. One of the
earliest studies to support this hypothesis showed that not
only do macrophages facilitate the growth of extravasated
tumor cells, but also their elimination after initial cancer
cell dissemination had been established led to a signif-
icant decrease in lung metastasis. Thus, the presence of
macrophages in secondary organs is necessary for successful
CTC extravasation, establishment, and growth [152].

Whether TAMs are present before the arrival of circu-
lating CSCs or whether they are recruited following CSC
extravasation remains unclear. In mouse lung or melanoma
subcutaneous tumors, CD11b+ myeloid cells accumulate in
the lungs prior to the detection of metastatic tumor cells
[153]. In studies using a genetically engineered mouse model
of PDAC, infiltration of F4/80+CD11b+ macrophages in the
livers of mice was observed months before tumor develop-
ment and metastatic growth (M. Vallespinós and B. Sainz
Jr., unpublished data). There is increasing evidence that
more differentiated myeloid cells also play an important
role in the development of the premetastatic niche. Specif-
ically, van Deventer et al. observed that the recruitment of
CD11b+Ly6C+monocytes to the premetastatic lung enhances
B16 cell metastasis [154], andGil-Bernabé et al. demonstrated
that CD11b+CD68+F4/80+ recruited macrophages establish
the premetastatic niche that facilitates successful breast can-
cer metastasis to the lungs [155]. It remains to be determined
if the sum of these findings holds up in the human setting.
Until then, it is interesting to speculate that primary tumor-
derived secreted factors, such as soluble proteins or exosomes
[156], precondition the premetastatic sites in different organs
by preloading them with recruited myeloid progenitor cells.
Once recruited to these sites, they can rapidly differentiate

into metastasis-associated macrophages (MAMs) following
the arrival of circulating CSCs, thus facilitatingCSCs extrava-
sation, survival, and subsequent proliferation via paracrine-
mediated mechanism [157]. It is also important to note
that, like TAMs in the primary tumor, MAMs may also
facilitate CSC survival from immune cell destruction via the
immunosuppressive mechanisms discussed above. Thus, the
contribution of macrophages in the premetastatic and their
influence in the development of metastatic lesions may be
more important than their role in the primary tumor.

7. Therapeutic Strategies

Cancer has been treated with radiation therapy, chemother-
apeutic drugs, and hormonal therapy for decades; however,
these treatments are not tumor cell-specific and can result
in severe toxicity. Tumor cells have acquired the ability to
circumvent the effects of conventional therapies, leading to
resistance to anticancer therapies. While there has been a
recent explosion in the field of developing targeted molec-
ular therapies that specifically block tumor cell growth and
progression, a subset of cells can evade the effects of these
drugs, leading to drug-resistance and/or tumor relapse. The
question remains as to whether we are targeting the right
population of cells.

Numerous antimacrophage strategies, including trabecte-
din [158], RG7155 (anti-CSF-1R) [159], and an anti-MIF
(macrophage migration inhibitory factor) antibody [160],
have been developed and are currently being tested in preclin-
ical and Phase I clinical trials. However, the CSC model sug-
gests that effective therapeutic strategies must target CSCs to
not only eliminate tumor progression, but also prevent tumor
recurrence after therapy. As the tumor microenvironment
provides CSCs with protection from conventional therapies
by promoting their “stemness” and CSCs enhance protumor
properties of TAMs, disrupting CSC-TAM cross talk, or
using a combined strategy to target both CSCs and TAMs,
represents an exciting and promising approach for cancer
therapy. A recent study demonstrated that cancer stemlike
cells from chemoresistant tumors release proinflammatory
cytokines that contribute to a protumor microenvironment
by generating M2-like myeloid cells [161]. Mitchem and
colleagues showed that targeting TAMs in PDAC reduced
both CSC properties and chemoresistance [101].These results
suggest that targeting the CSC-TAM interaction is crucial for
not only preventing tumor progression, but also circumvent-
ing chemoresistance.

One of the most promising antibody-mediated thera-
peutic strategies to date is based on inhibiting the interac-
tion between SIRP𝛼 and CD47, a transmembrane protein
expressed on many cancer cells and CSCs [162, 163], to
allow for increased phagocytosis of cancer cells. Interaction
of CD47 (“don’t eat me” signal) with SIRP𝛼 results in the
inhibition of phagocytosis bymacrophages (includingTAMs)
through a signaling cascade mediated by phosphorylation of
the immunoreceptor tyrosine-based inhibitory motif present
on the cytoplasmic tail of SIRP𝛼 [164]. Numerous studies
over the past few years, predominantly led by Weissman
and colleagues, showed that blocking CD47 using anti-CD47
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Figure 4: TAM-secreted factors regulate CSC phenotypes. TAMs have been shown to secrete LL-37, ISG15, IL-17, EGF, IL-6, MFGE-8, and
IL-8 (among others), which in turn activate MAPK, STAT3/NF𝜅B, and other yet-to-be-defined signaling pathways, leading to the activation
of CSC properties, such as self-renewal, chemoresistance, migration, and invasion.

monoclonal antibodies allows for increased phagocytosis of
cancer cells in vitro and decreased tumor burden in vivo
[162, 163, 165, 166]. Recent work by Cioffi et al. has extended
these findings to show that anti-CD47 therapy can essentially
turn the tide on the relationship between CSCs and TAMs,
facilitating effective phagocytosis of pancreatic CSCs, which
can be further augmented with standard chemotherapeutic
agents like gemcitabine or Abraxane [162]. These findings
suggest that CD47 inhibition in the adjuvant setting may be
an effective means for treating PDAC and potentially other
cancers; however future preclinical and clinical studies will
need to be performed. As we gain a better understanding
of the relationship between TAM and CSCs at each stage of
tumor development and progression, we will undoubtedly
discover new means to interfere with the TAM-CSC cross
talk.

8. Concluding Remarks

In this review, we discussed several TAM-derived factors that
promote stemness and are thus potential therapeutic targets
(summarized in Figure 4). The studies of the past decade
have led to significant advances of our understanding of

themolecular pathways regulatingTAMs andCSCs; however,
we are only beginning to put together the pieces that con-
stitute the complex TAM-CSC cross talk that occurs within
the host. Increasing evidence suggests that a stemlike niche
composed of numerous cell types, including macrophages, is
important for promoting CSC self-renewal andmaintenance,
and likewise, CSC-derived factors induce protumor signals
in TAMs. Our current knowledge of CSCs heavily relies on
tumor transplantation assays in both syngeneic and xenograft
models, the latter of which does not recapitulate the complex
microenvironment in which spontaneous tumor initiation
occurs, nor can xenograft models accurately mimic human
CSC and human TAM interactions. While many immune-
compromised mice express macrophages, the macrophage
response is typically elevated in these mice and it is uncer-
tain as to whether murine macrophages communicate with
human CSCs in the same way as their human counterparts.
Thus, until we develop mouse models with humanized
immune systems that can support the growth of human
primary tumors, we will continue to rely on excellent in vitro
systems and syngeneic mouse models to better facilitate our
understanding of the relationship between TAMs and CSCs
and the eventual development of novel compounds to inhibit
this unconventional dependence.
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pancreatitis is essential for induction of pancreatic ductal
adenocarcinoma by K-Ras oncogenes in adult mice,” Cancer
Cell, vol. 11, no. 3, pp. 291–302, 2007.
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